

APPLICATION NOTE

QS DETECTORS PIN-OUTS AND DESCRIPTIONS

QS-IL, QS-IF AND QS-THZ HYBRID PYROELECTRIC DETECTORS

Figure 1: QS-IL, QS-IF and QS-THZ Pin-Out

PIN-OUT

These three families of Hybrid Pyroelectric Detectors include a LiTaO $_{\rm 3}$ detector element, a low noise Current Mode op amp and a large feedback resistor. The QS-IL and QS-THZ are designed for optimum R $_{\rm v}$ and NEP at 5 Hz. The QS-IF incorporates a high bandwidth op amp and a slightly smaller feedback resistor for flat voltage output up to 1000 Hz.

The three series share the same Pin-Out, as shown in Fig. 1. Note that Pins 1, 3, and 5 are not connected inside the TO package and therefore are not part of the electronics.

CAUTION: Please review our Application Note 202181 on Handling Sensitive Pyro Detectors.

SCHEMATIC OF OPERATION

The circuit on Fig. 2 shows the typical connections made to the hybrid detector. +/- 12 V powers the op amp. You can add an external feedback resistor to increase the bandwidth of the detector and/or lower the voltage responsivity. We recommend cutting pin 2 off if there is no plan to use an external component. This way, the detector's performance will be optimized.

CAUTION: Make sure to apply the +Voltage to PIN 7 and -Voltage to PIN 4 to avoid damaging the op amp circuit.

Figure 2: QS-IL, QS-IF and QS-THZ circuitry

gentec-ۥ)

APPLICATION NOTE

QS-VL HYBRID PYROELECTRIC DETECTORS

Figure 3: QS-VL Pin-Out

PIN-OUT

This family of Hybrid Pyroelectric Detectors includes a $LiTaO_3$ detector element, a low noise FET Voltage Mode preamp and a large feedback resistor. The QS-VL detectors are designed for optimum $R_{\rm V}$ and NEP at 5 Hz.

The Pin-Out is shown in Fig. 3. Note that Pin 7 is not connected inside the TO package and therefore is not part of the electronics.

CAUTION: Please review our Application Note 202181 on Handling Sensitive Pyro Detectors.

SCHEMATIC OF OPERATION

The circuitry on Fig. 4 shows the typical connections made to the hybrid detector in a source follower circuit. You can add an external Load Resistor between Pin 8 and GND. This effectively allows you to change the voltage responsivity and/or the bandwidth of the detector.

Figure 4: QS-VL circuitry

APPLICATION NOTE

QS-L AND QS-H DISCRETE PYROELECTRIC DETECTORS

Figure 5: QS-L Pin-Out

Figure 6: QS-H Pin-Out

MECHANICAL DETAILS OF THE QS DETECTORS

Figure 7: QS detectors mechanical details (TO5-Based)

MODEL	DIM. A
QS-L	4.6
QS-H	2.0
QS-VL	4.6
QS-IF	4.6
QS-IL	4.6

Figure 8: QS detectors mechanical details (TO8-Based)