

はじめに

この度は、当社製品をご購入いただきありがとうございます。

レーザー光の測定前に本説明書をお読みいただき、安全に測定を行ってください。

保証期間について

本製品の保証期間は工場出荷から1年です。誤使用が原因ではない不具合などに対して、現品の交換または 修理等の対応を行います。不具合が発生した場合は、ご購入元のGentec-EOの代理店もしくはGentec-EO Japan にお問い合わせいただけますようお願いいたします。

Gentec-EO、Gentec-EO Japan 及び Gentec-EO の代理店は、製品不具合から生じる結果損失について は責任を負いません。

お客様による分解・改造は保証の対象外となりますのでおやめください。

-お問い合わせ・ご連絡先-

Gentec-EO Japan 合同会社 〒114-0023 東京都北区滝野川 1-1-1 EXL111ビル 101号 Tel : 03-5972-1290 Fax : 03-5972-1291 e-mail : <u>service@gentec-eo.com</u> Web : <u>www.gentec-eo.com/ja</u>

安全にお使いいただくために

パワーメーター本体もしくは受光部に損傷が見られる、もしくはパワーメーターが正しく動作していないと疑われる場合は、使用を中止して下さい。

受光部にレーザー光を照射した後は、持ち運びの前に少し時間をおいて下さい。受光部表面が非常に熱くなっており、冷却されていない場合やけど等けがをする恐れがあります。

注記: 本製品は試験の結果、FCC規則パート15、クラスAデジタルデバイスの規制に準拠していることがわかっています。この規制は、商用環境での製品の使用の際に、有害な干渉から正しく保護する事を目的としています。本製品は、無線周波数エネルギーを発生、使用、放射する可能性があり、指示に従って設置および使用しないと、無線通信に有害な干渉を引き起こす可能性があります。この装置を居住区域で動作させる場合、所有者が自身で有害な干渉を修正する事が必要になります。

この冊子における表記について

この取り扱い説明書では、以下の国際マークが使われています。

製品の損傷を防ぐため、本説明書をお読みになり、警告や注意情報をご確認下さい。

はじめに	1
保証期間について	1
安全にお使いいただくために	1
1. PRONTO ハイパワーシリーズ – ハンドヘルドレーザーパワーメーター	6
1.1 概要	6
1.2 ご使用前にご確認下さい	6
1.3 測定の基本手順(PRONTO-500/3K/6K/10K)	7
1.3.1 シングルショットパワー測定モード(以下 SSP)での測定方法 ※PRONTO-500-IPLを除く 1.3.2 シングルショットエネルギー測定モード(以下 SSE)での測定方法 ※PRONTO-500-IPLのみ 1.3.3 連続測定モード(以下 CWP)での測定方法 ※PRONTO-500のみ	7 8 9
1.4 PRONTO 仕様	10
1.4.1 パワーディテクター	10
1.4.2 エネルギーディテクター	11
1.4.3 各部機能について 2. 操作方法説明	12 14
	14
2.2 装置電源 ON/OFF	14
2.3 設定変更	15
2.3.1 設定メニューを開く / 閉じる	15
2.3.2 設定アイコン	15
2.3.3 衣示PIC変史	. 16
2.3.4 ティスノレー 岬皮 切り 皆え 2.3.5 補正	. 10 16
2.3.6 装置情報の表示·確認	. 10
2.4 波長を変更する	16
	17
	18
2.6.2 捕捉データ移行	18
2.6.3 データ消去	18
3. 測定手順(PRONTO-500 及び PRONTO-500-IPL)	19

<u>目次</u>

GENTEC-EO JAPAN 合同会社

3.1 ゼロオフセット(PRONTO-500, CWP モードのみ)	19
3.2 スケール設定 (CWP, SSE モードのみ)	19
3.3 トリガーレベルの設定(PRONTO-500-IPL SSE モードのみ)	
3.4 実際に測定する	19
3.4.1 SSP モード	20
3.4.2 CWP モード	20
3.4.3 SSE モード	
4. USB 通信	21
	0.4
4.1 就明	
4.2 PRONTO への通信セットアップ	21
4.2.1 COM ポートを確認する	21
4.2.2 PRONTO の接続	21
4.2.3 エコーコマンド	
4.2.4 接続テスト	
4.2.5 文字の追加	
4.2.6 ハイバーターミナル設定のショートカット	
4.3 シリアルコマンドフォーマット	22
4.3.1 シリアルプロトコルルール	
4.3.2 テキストモードルール	23
4.4 PRONTO のシリアルコマンドリスト	
4.5 PRONTO のシリアルコマンド詳細説明	24
4.5.1 表示	24
4.5.2 データ取得	
4.5.3 セットアップ	
4.5.4 コントロール	
4.5.5 機器と検出器の情報	
4.5.6 エラーメッセージ	
5. 安全にお使いいただくために	44
5.1 製品 全般に 9 3 情報	
5.2 安全にお使いいただくために	
5.3 受光面へのダメージ	44
5.4 受光部の温度センサーについて	45
6. USB ドライバーインストール	47

7. メンテナンス	48
8. 適合情報	49
Appendix A:WEEE 指令	50
APPENDIX B: PRONTO DATA TRANSFER ソフトウェアのインストール	51
APPENDIX C:PRONTO ファームウェアのアップデート	54

1. PRONTO ハイパワーシリーズ – ハンドヘルドレーザーパワーメーター

1.1 概要

PRONTO ハイパワーシリーズは、最大 10kW までのレーザー光を簡易的に計測できるレーザーパワーメーターで す。タッチスクリーン式表示部を備えており、そこで本体の設定や測定値の表示を行う事ができます。 ご用途に応じて、大きく以下 2 種類のラインナップがあります。

- PRONTO-500, PRONTO-xK: 短時間のレーザー光照射で測定できるパワーメーター。
 最大測定能力 10kW。
- PRONTO-500-IPL: IPL 光源のエネルギー測定に最適なエネルギー測定器。
 最大測定能力 350J。

Gentec-EO の独自技術 « Personal Wavelength Correction(PWC) « により、製品校正時の波長以 外でも正確な測定をすることができます。

製品の再校正や修理の際は、ご購入いただいた Gentec-EO の代理店もしくは、Gentec-EO Japan までお問い合わせください。

1.2 ご使用前にご確認下さい

本製品はレーザー光を自動的に検知しますので、外部タイマーは不要です。

レーザー照射前に必ずレーザーパラメーターをご確認いただき、測定パワー/エネルギー(単位: W および J)やビー ム密度(W/cm²及び J/cm²)が仕様に収まるようにしてください。

レーザー光照射、測定の際は、必ずレーザー保護眼鏡等の安全具を装着してください。本製品にレーザー光 を照射した場合、一部の光が反射しますので、使用現地の安全基準等を遵守していることをご確認いただ き、十分ご注意ください。

本製品に伴う事故及び損害について、Gentec-EO 及びその関係者は責任を負いません。

PRONTO ハイパワーシリーズ ユーザーズマニュアル(V1.4)

1.3 測定の基本手順(PRONTO-500/3K/6K/10K)

ここでは、各測定モードでの動作方法を記載しています。波長の設定等、測定前の PRONTO の設定内容とその 方法については項目 2 または 3 をご参照下さい。

1.3.1 シングルショットパワー測定モード(以下 SSP)での測定方法 ※PRONTO-500-IPLを除く

この測定モードは、数秒間レーザー光を受光面に照射して、その時の平均パワーを測定・表示させるモードです。

A) 測定の準備をする

レーザー発振器をウォームアップさせ、安定させておきます。PRONTOと発振器の間にシャッター等、光をブロッ クできるものをご用意いただき、計測の準備をさせておきます。

PRONTO のメインボタン を押して、電源を ON にします。 PRONTO 画面で、SSP モードを選択します。

測定開始ボタンを押して、測定を開始します。

B) Pronto にレーザー光を照射する

シャッターを開き、PRONTOの受光面中心部にレーザー光を照射してください。照射時間はモデルにより異なります(応答時間の欄をご参照下さい)。

C) 測定値を読み取る

レーザー光を再びブロックし、受光面に光が当たらないようにしてください。PRONTOの液晶画面上に読み値が表示されます。

1.3.2 シングルショットエネルギー測定モード(以下 SSE)での測定方法 ※PRONTO-500-IPLのみ

A) 測定の準備をする

レーザー発振器をウォームアップさせ、安定させておきます。PRONTOと発振器の間にシャッターのような光をブロックできるものをご用意いただき、計測の準備をさせておきます。

PRONTO のメインボタン を押して、電源を ON にします。

PRONTO 画面で、SSE モードを選択します。また、トリガーレベルを希望の値に設定します。

B) PRONTO にレーザー光を照射する

シャッターを開き、PRONTOの受光面中心部にレーザー光(シングルショットパルス)を照射してください。 PRONTOは自動的にパルス光を検出します。

C) 測定値を読み取る

PRONTO ハイパワーシリーズ ユーザーズマニュアル(V1.4)

レーザー光を再びブロックし、受光面に光が当たらないようにしてください。PRONTOの液晶画面に読み値が 表示されます。

1.3.3 連続測定モード(以下 CWP)での測定方法 ※PRONTO-500のみ

CWP モードでは、比較的低出力(~40W)までのパワー測定を連続的に測定する事ができます。他の測定モ ードと異なり、CWP モードでは、測定前に熱オフセットを取り除いておく必要があります。測定方法は以下の通 りです。

A) 測定の準備をする Pronto Shutter Laser

レーザー発振器をウォームアップさせ、安定させておきます。PRONTOと発振器の間にシャッターのような光をブ ロックできるものをご用意いただき、計測の準備をさせておきます。

PRONTO のメインボタン を押して、電源を ON にします。 その後、PRONTO 画面で、CWP モードを選択します。 ゼロオフセットボタンを押して、熱オフセットを除去します。

B) PRONTO にレーザー光を照射する

シャッターを開き、PRONTOの受光面中心部にレーザー光を照射してください。

C) 測定値を読み取る

PRONTO -500の応答時間経過後、液晶画面上に読み値が表示されます。この測定モードではレーザー 光を連続照射してもダメージを受けませんので、測定後にシャッターで光をブロックする必要はありません。

1.4 PRONTO 仕様

1.4.1 パワーディテクター

PRONTO パワーメーターシリーズは、対応出力により性能が異なります。詳しくは以下の表をご参照下さい。 全モデルについて、校正波長は YAG(1064nm)となっており、0.248~2.5um の波長範囲では校正波長からの 補正係数値が ROM に記憶されています(Personal Wavelength Correction)^{※1}。なお、CO2(10.6um)は オプションでの対応となります。

下記の仕様は毎年定期校正を行っている事が条件となります。測定環境は室温 15~28℃・相対湿度は <80%とし、保管環境は温度 10~60℃・相対湿度 <90%が条件となります。

項目/モデル名	PRONTO-500	PRONTO-3K	PRONTO-6K	PRONTO- 10K
アパーチャー	Φ55mm			
応答波長範囲	0.19~20um			
校正波長範囲	0.248~2.5um + 7	オプションで 10.6um		
SSP モード測定パワー範囲	1~500W	5~3,000W	20~6,000W	30~10,000W
CWP モード測定パワー範囲	0.1~40W	N/A		
応答時間(典型値)	5 秒 (CWP モードは 2 秒)	10秒	5秒	5秒
測定精度	±3%@SSPモ−ド ±2.5%@CWPモ −ド	±5%	±5%	±5%
SSP モードのノイズレベル	0.1W	5W	20W	30W
最大平均パワー密度				
(1064nm, CW)				

@100W	25kW/m ²			
@500W	5.0kW/cm ²	7.0kW/cm ²		
@3kW		5.0kW/cm ²	8.0kW/cm ²	
@6kW			7.0kW/cm ²	7.0kW/cm ²
@10kW				5.5kW/cm ²
最大受光面温度	65℃	65℃	75℃	75℃
SSP モードでの測定最大回	100W:25	0.5W : 6	1kW : 6	1kW:10
数(1回に付き8秒間光を照	200W:12	1kW:3	2kW:3	2kW : 5
射し、冷却が必要になるまで	300W:8	1.5kW:2	3kW:2	5kW:2
繰り返した場合)	500W : 5	3kW:1	6kW:1	10kW:1
ハードウェアに関する仕様				
受光部寸法(mm)	88 x 88 x 32	88 x 88 x 43	88 x 88 x 36	88 x 88 x 46
表示部寸法(mm)	41W x 140L x 16D			
ケーブル長(m)	1.5(ケーブル長の変更は特注にて承ります、ご相談下さい)			
重量(g)	680	1015	1215	1910
表示器マウント穴サイズ	8-32、1 か所			
動作環境	10~40℃、<80% RH			
保管環境	10~60℃、<90% RH			
バッテリー種類	リチウムイオン、USB 充電式			
	17 時間、もしくは 4,200 ポイント測定分(表示輝度 25%において)			
	充電時間:7.5時間	(空の状態からの充電	 1 電時間)	
バッテリー耐用充電回数	フル充電約 500 回分(0-100%充電の場合)			
ユーザーインターフェース				
インターフェース	タッチスクリーン			
液晶部	28 x 35mm(128 x 160 ピクセル) カラーLCD			
データ取得・移行	最大 50,000 ポイント			
インターフェース設定	向き変更(4 方向), 輝度変更(4 段階)			
設定保存	画面向き、輝度、設定波長、補正係数、トリガーレベル			
表示桁数	4桁			
測定モード	SSP/CWP(切換)	SSP のみ	SSP のみ	SSP のみ

1.4.2 エネルギーディテクター

以下は PRONTO -500-IPL に関する仕様です。

項目	単位	仕様値
応答スペクトル範囲	um	0.19-2.5
校正波長	um	1064

GENTEC-EO JAPAN 合同会社

アパーチャー		23.76cm ² / φ55mm	
感度(典型値)	mV/J	0.013	
応答時間	S	2	
最小測定間隔	S	15	
最大パルス幅	ms	433	
測定エネルギー範囲	J	2~350	
最大平均パワー密度	kM/cm^2	45	
(1064nm, CW, 10W での値)	KVV/CITI	45	
パルスレーザー損傷閾値	$1/cm^2$	175	
(パルス幅 10ms での値)	J/CIII	175	
ノイズレベル	mJ	500	
測定不確かさ	%	±5	
測定モード		SSE のみ	

※1 Personal Wavelength Correction について

レーザー光は特定の波長で構成されています。受光部の吸収率は波長により異なりますので、パワー/エネルギ ーの測定にはその吸収率を考慮する必要があります。

Gentec-EO のパワーメーター/エネルギーメーターには波長による吸収率による誤差を表示器上で補正する機能が付いています。Personal Wavelength Correction™は Gentec-EO の独自技術で、NIST 準拠の分光光度計を使って波長による吸収率の比を個体ごとに測定し、その実測値をディテクターの EEPROM に書き 込んでいます。お客様ひとりひとりの製品に対して測定を実施していますので、基準校正波長(レーザーを使った ディテクターの感度測定)以外の波長のレーザー光に対しても、非常に信頼できるパワー/エネルギーの測定がで きます。

1.4.3 各部機能について

以下に PRONTO の各部の説明を記します。

受光部側面には温度ステッカー(黄色)が貼ってあり、65℃を超えると中央の部分が黒く変色します。変色した場合は、オーバーヒートによる内部のダメージが疑われますので、Gentec-EOの代理店もしくは Gentec-EO Japan までお問い合わせください。

2. 操作方法説明

2.1 ユーザーインターフェース

① 液晶上部

バッテリーレベル、選択中の波長が表示されます。PRONTO-500の場合、測定モードも表示されます(デフォ ルトでは SSP モードです)。

2 測定値

直近の測定値を表示します。

PRONTO-500 及び PRONTO-500-IPL の場合、数値にタッチすることで測定スケールを変更することができます(CWP モード・SSE モードの時のみ)。

③ 装置温度

ヘッド部の温度を温度計アイコンで表示しています。

→ 温度計アイコンが赤く、HOT とディスプレーに表示された場合、すぐにレーザー照射を中止し装置を冷却するようにしてください。

④ 液晶下部

一番左のボタンは測定モードにより異なります。中央のボタンは装置内メモリにデータ捕捉を開始/終了し、一番右のボタンでは波長選択メニューに移ります。

2.2 装置電源 ON/OFF

電源 ON :

ボタンを押してください。

電源 OFF: Vボタンを3秒程度長押ししてください。

装置には自動電源 OFF の機能があり、データ捕捉中の場合を除き、操作されていない状態が 5 分経過すると自動的に電源が OFF になります。装置が USB ケーブルで PC に接続されている場 合は、手動で電源 OFF にするか、 USB ケーブルを抜かない限り電源 ON 状態が維持されます。

2.3 設定変更

2.3.1 設定メニューを開く / 閉じる

装置電源 ON の時、 ボタンを軽く押すとメニュー画面に移ります。もう一度ボタンを軽く押してメニュー画面を終 了し、その時変更された本体設定はそのまま維持されます。

2.3.2 設定アイコン

設定メニューには以下のアイコンが現れます。測定モード切り替えメニューは PRONTO-500 のみに対応し、 PRONTO-3K/6K/10K は常に SSP モードでの測定、また PRONTO-500-IPL は常に SSE モードのみでの測 定となります。

アイコン	機能	詳細
	表示向き設定	ディスプレー上の文字の向きを変更します(4 パタ ーン)。ボタンを押すと次のパターンに切り替わりま す。
★ ★ ★ ★	輝度調整	輝度レベルを表示します(4 段階)。ボタンを押す と次のレベルに切り替わります。
CAL	補正係数入力	ボタンを押すと補正係数入力画面に切り替わり ます。
i	本体情報	シリアル番号等本体情報を表示します。
	以下、PRONTO-5	500 のみ
•••	More	次のメニュー群に移行します。
SSP	シングルショットパワー(SSP)	SSP モードに変更します。
CWP	連続入カパワー(CWP)	CWPモードに変更します。
SSE	シングルショットエネルギー(SSE)	使用不可

2.3.3 表示向き変更

上下左右の4パターンの切り替えが可能です。現在の表示向きが矢印で表されていますので、ボタンを押してご希望の向きに変更をしてください。設定メニューを終了した後に変更内容が保存されます。

2.3.4 ディスプレー輝度切り替え

100%、75%、50%、25%の4段階から切り替えが可能です。現在の輝度がマークで表示されていますので、ボ タンを押してご希望の輝度に変更してください。設定メニューを終了した後に変更内容が保存されます。

2.3.5 補正係数の調整

装置へのレーザー光入力係数を調整することができます。調整メニューに行くには、"CAL"ボタンを押してください。 入力係数に応じて表示値が変更されます。デフォルトでは 1.000 となっており、何も補正係数がかかっていない事 を意味します。入力範囲は 0.500~2.500 です。

係数の変更したい場合、例として係数を1.000から1.200にしたい場合は、まず小数点1桁目の0を押して 右画像のように青く表示されている事を確認し(1.000)、そこからディスプレー下部の上下矢印で数値を変 更します。

数値入力が終了したら、 ジボタンを押して変更を保存します。

2.3.6 装置情報の表示・確認

ℓ ボタンを押すとモデル名、シリアル番号、ファームウェアバージョン及び最終校正日が表示されます。

2.4 波長を変更する

測定を行う前に、装置の設定波長をお使いのレーザー波長に合わせる必要があります。 <mark>ハー</mark>でプリセットメニュー 画面に移行します。

PRONTO ハイパワーシリーズ ユーザーズマニュアル(V1.4)

GENTEC-EO JAPAN 合同会社

266 nm	355 nm
532 nm	1064
10.6 µm	
■図6 プリセ	ット波長表示画面

ユーザーは 193nm~10.6um の範囲内で、波長を設定、選択することができま す。プレセット値を変更するには、変えたいプリセット波長のボタンを長押しして変更画 面に移行し、好みの値を入力します。

2.5 実際に測定する(SSP モード)

測定時には、装置は光学スタンドに立てるか、フラットな場所に設置することを推奨します。 レーザー光入射前に、ビーム径、受光部の位置合わせ、のターゲット出力の確認を行ってください。

- 1. 装置を電源 ON にします。
- 2. 測定開始ボタンとを押すと、画面中央に待機状態を示すドットが表示されます。

測定は中止ボタンを押すことにより、いつでも中止することができます。

中止された後、ディスプレー上には直近計測した時の値が表示されます。

3. 装置を光路内に設置し受光部の中心にレーザー光が当たるようにします。

PRONTO ハイパワーシリーズ ユーザーズマニュアル(V1.4)

GENTEC-EO JAPAN 合同会社

4. レーザー光を検知するとすぐに 5 秒のカウントダウン表示がされます。そのままカウントダウン終了をお待ちくだ さい。

- 5. カウントダウン終了後、測定値が表示されます。光路から受光部を取り去っても問題ありません。なお、この 測定値を表示した状態で電源 OFF にしても、次回電源 ON 時には測定値が表示され続けます。
- 6. もう一度測定をするには、手順2に戻ってください。

2.6.1 データ捕捉

PRONTO では、保存ボタンとですを押すだけで、本体内メモリにデータを保存できます。ボタンを押すと表示が白色

2.6.2 捕捉データ移行

保存したデータを呼び出すには、USB ケーブルで装置を PC に接続し、PRONTO DATA TRANSFER ソフトウェアでで、 アレンを使います。最新バージョンのソフトウェアは Gentec-EO ウェブサイト(https://gentec-

<u>eo.com/downloads)</u>からダウンロードができます。データはテキストフォーマットでコンピュータ上にアップデートされ、 ファイル移動や分析用ソフトなどでのファイルを開けます。

!

PC に移行されたデータは装置の内部メモリから削除されますのでご注意ください。

2.6.3 データ消去

装置のみで内部メモリを削除したい場合は、保存ボタンとしを3秒長押しすると全てのデータ消去を聞かれます。 削除したい場合は OK を押してください。

3. 測定手順(PRONTO-500 及び PRONTO-500-IPL)

3.1 ゼロオフセット(PRONTO-500, CWP モードのみ)

- 1. 受光部に何もレーザー光が入らないようブロックします。
- 2. 表示値が安定していることを確認してください。装置が温度面で安定していないと、レーザー光が入射され ていなくてもゼロ表示されないことがあります。比較的低出力の光を測定する場合 30 分程度ウォームアッ プさせることを推奨します。
- 3. ゼロオフセットボタン Øを押します。装置がビジーな状態の時は、ボタンが押せない状態になっていることが あります。
- 4. ゼロオフセット作業が完了したら、ディスプレーは測定画面に戻り、正確な測定ができる状態になります。

Ø 。このオフセットは、ボタンをもう一度押すか ゼロオフセットがかかっているとき、ボタンは白色で表示されます PRONTO を電源 OFF にしたときに解除されます。

3.2 スケール設定 (CWP, SSE モードのみ)

測定スケール設定メニューにアクセスするには、測定値表示部分(タッチスクリーンの中央部)を3秒長押ししてくださ い。上下向きの矢印ボタンが現れ、対応可能なスケール、もしくは自動スケールのいずれかが選択可能です。初期 設定では自動スケールになっています。

■図7 スケール変更メニュー画面

ボタンを押して変更が自動保存されます。 設定ができたら、

3.3 トリガーレベルの設定(PRONTO-500-IPL SSE モードのみ)

トリガーボタン ていて、0.1~99.9%の範囲内で設定ができます。初期値は 2.0%です。 各桁の数字は独立で調整できます。それぞれの桁が青く表示されている時に、上下向き矢印ボタンで数値を変

更してください。設定が完了したら ボタンを押して終了してください。

3.4 実際に測定する

前述までの各設定が完了したら測定ができる状態になっています。以下手順に従って測定してください。

PRONTO ハイパワーシリーズ ユーザーズマニュアル(V1.4)

測定時には、装置は光学スタンドに立てるか、フラットな場所に設置することを推奨します。 レーザー光入射前に、ビーム径、受光部の位置合わせ、ターゲット出力の確認を行ってください。

3.4.1 SSP モード

このモードの測定方法はセクション 2.5 を参照してください。

3.4.2 CWP モード

- 1. 装置を電源 ON にします。
- 2. 最大出力に関する警告表示が現れるので、OKを押します(最大 8W)

- 3. 測定の正確性を最大限にするため、ゼロオフセットを行います(3.1.1 をご参照ください)。エネルギー測定の 場合、外部からの光や温度によるゆらぎを受光部に与えないように注意してください。
- 4. 装置をビーム光路上に設置し、受光部の中心にレーザー光が当たるよう調整します。
- 5. 装置が自動的に測定値を表示、更新します。

3.4.3 SSE モード

- 1. 装置を電源 ON にします。
- 2. 装置を光路上に設置し、受光部の中心にレーザー光が当たるよう調整します。
- 3. レーザーパルスが入射すると、自動的にエネルギー値を表示します。
- 4. レーザーパルスを捕捉する都度、トリガーレベルボタンTRIGがグレーに変化します、TRIG。
- 5. 正確な測定をするためには、測定中はディスプレーに触れないようにして、パルス幅・繰り返しが安定するようにしてください。

4. USB 通信

4.1 説明

PRONTO には一つの通信モードがあり、それは ASCII です。フォーマットはセクション 5.3 で記述されているテキス ト入力コマンドが必要となります。 セクション 5.5 では、全てのコマンドについて説明します。

PRONTO が使用する USB クラスは CDC、または通信デバイスクラスです。これは、ホスト PC に COM ポートとし て表示されることを意味しますが、COM ポートではなく、むしろフルスピード USB ポートです。 Windows の指示に 従って USB ドライバーをインストールします。

標準の COM ポートツールを使ってソフトウェアの適切なポートを開きます。デフォルトのままで USB 接続可能です。

PRONTO を制御するには、標準の COM ポート書き込み及び読み取りプロトコルを使用して下さい。

4.2 PRONTO への通信セットアップ

4.2.1 COM ポートを確認する

USB インストールを確認して COM ポート番号をみつけるには下記をクリック。

Start \rightarrow Settings \rightarrow Control Panel \rightarrow System \rightarrow Device Manager

Ports (COM&LPT)までスクロールしてその行をダブルクリックします。選択肢のひとつは、

Power/Energy Monitor (COM#)

COM ポート番号を書き留めます。次のステップで必要になります。

4.2.2 PRONTO の接続

お客様が使用しているシリアル通信ソフトウェアを使用することができます。ハイパーターミナルは Windows を搭載 した PC で広く利用されているため、ここでの説明はハイパーターミナル用となります。 下記を選択。

Start \rightarrow Programs \rightarrow Accessories \rightarrow Communications \rightarrow HyperTerminal

通信設定を保存するには、接続の名前を入力して下さい。"Connect using"のドロップダウンメニューで USB ドラ イバーがインストールされている COM ポートを選択します(セクション 5.2.1)。 OK を選択して下さい。

次に表示される通信パラメータウィンドウに以下の設定を入力して下さい。

PRONTO COM Port Settings		
Bits per second	Any settings will work	
Data bits	Any settings will work	
Parity	Any settings will work	
Stop bits	Any settings will work	
Flow control	Any settings will work	

OK をクリックして、ハイパーターミナルウィンドウにシリアルコマンドの入力を開始します。

4.2.3 エコーコマンド

入力したコマンドは、ハイパーターミナルを設定しない限り、ハイパーターミナルウィンドウに表示されません。 PRONTOからの応答のみが表示されます。ハイパーターミナルウィンドウで入力中のコマンドを確認したい場合は、 ファイルメニューをクリックして次の手順を実行します。

File \rightarrow Properties \rightarrow Settings \rightarrow ASCII setup \rightarrow "Echo typed characters locally" \rightarrow OK

4.2.4 接続テスト

ハイパーターミナルウィンドウで、*VER を入力します。応答がご使用の PRONTO のバージョンである場合は、正常 に接続されており、シリアルコマンドアクションの準備ができています。

4.2.5 文字の追加

場合によっては、PRONTOに接続の問題があり、文字を追加することで解決できます。これを調整するにはファイル メニューをクリックして次の手順を実行します。

4File \rightarrow Properties \rightarrow Settings \rightarrow ASCII setup \rightarrow "Character delay": add a few milliseconds of delay \rightarrow OK

4.2.6 ハイパーターミナル設定のショートカット

セッションを終了すると、ハイパーターミナルは設定を保存するかどうかを尋ねます。今後通信パラメータを再入力しな いようにするには、"Yes"をクリックして保存します。次回に一連のコマンドを実行すると、セッションの名前がハイパー ターミナルの後に表示されます。セッション名をクリックすると、保存された設定を使用して接続が開きます。コマンド文 字列を再入力しないようにするには、このファイルへのショートカットをデスクトップに置きます。ファイル名を検索してファ イルを選択します。右クリックしてドロップダウンメニューの"Shortcut"を選択します。

4.3 シリアルコマンドフォーマット

4.3.1 シリアルプロトコルルール

コマンドはテキスト文字列として送信されます。応答はデータまたは空の文字列になります。

4.3.2 テキストモードルール

全てのテキストコマンドはトリガ文字(*)で始める必要があります。改行やキャリッジリターンで終わる必要はありま せん。パラメータをスペースで区切ってはいけません。文字は大文字である必要はなく、大文字と小文字の混在は問 題ありません。すべてのテキストモードコマンドへの返信もテキストモードで行われ、キャリッジリターンとラインフィードで おわります。

エラーが発生した場合、返信文字列は次のいずれかです。

"Command Error. Command not recognized." もしくは

"Command Error. Command must start with '*'"

全てのテキストモード応答はキャリッジリターン<CR>またはラインフィード<LF>(あるいはその両方)で終わらうため、テキスト応答には、文字列内で多数の要素を区切る必要がある場合の集計が含まれています。これは、データをスプレッドシートにエクスポートするときに役立ちます。

4.4 PRONTO のシリアルコマンドリスト

#	Command Name	Command	Description	
DIS	PLAY			
01	Set Scale	SCS	Manually sets the scale	
02	Set Scale Up	SSU	Changes scale to the next higher scale	
03	Set Scale Down	SSD	Changes scale to the next lower scale	
04	Get Current Scale Index	GCR	Returns scale index between 0 and 41	
05	Set Autoscale	SAS	Sets the autoscale	
06	Get Autoscale	GAS	Returns autoscale status	
07	Display Valid Scale	DVS	Displays the valid scales for the connected head	
08	Set Trigger Level	STL	Sets the internal trigger level for pulse energy	
09	Get Trigger Level	GTL	Returns trigger level value	
10	Get Measure Mode Display	GMD	Returns the current measure mode on PRONTO	
11	Control LCD	LCD	Turn On/Off the LCD	
ME	ASUREMENT			
Dat	a Acquisition			
12	Query Current Value	CVU	Gets the value currently in ASCII or binary	
13	Send Continuous	CAU	Sends the values in ASCII or binary to the serial port with	
	Transmission of Data		the data sampling setting	
14	Stop the CAU Command	CSU	Stops the *CAU command	
15	Query New Value Ready	NVU	Determine if new reading is available or not	
16	Get Housing Temperature	TMP	Return the housing temperature	
Set	up			
17	Set Personal Wavelength	PWC	Specifies the wavelength in nm	
40	Correction in nm	DUU		
18	Set Personal Wavelength	PWM	Specifies the wavelength in microns	
40	Correction in microns	014/1		
19	Get Wavelength	GWL	Returns the wavelength in nm	
	Ntroi Cat Anticipation	ANT	Turne the entirination on an off	
20	Set Anticipation	ANT	Turns the anticipation on or off	
21	Get Anticipation Status	GAN	Returns the anticipation status	
22	Set Zero Uffset	500	Zeroes the reading for a value without offset	
23	Clear Zero Offset	000	Undoes the zeroing of the reading for a power detector	
24	Get Zero Offset	GZO	Returns the zero offset status	
25	Set User Multiplier	MUL	Sets the multiplier value	
20	Get User Multiplier	GUM	Returns the current multiplier value	
21	Set User Offset	OFF	Sets the offset value	
28	Get User Offset	GUO	Returns the current offset value	
29	Short Touch on Button	PRS	Simulate a short touch on button of display	
30	Long Touch on Button	PRL	Simulate a long touch on button of display	
	TRUMENT AND DETECTOR IN	FORMATION	Cate formula varian of the maniture	
31	Query Version	VER	Gets timware version of the monitor	
32	Query Status	010	Retrieves the detector information and monitor settings	
33	Query Extended Status	512	Returns the extended status	
34	Return Instrument ID		Returns the device model	
35	Return Instrument Firmware	GSV	Returns the firmware version	
36	Return Global Information	GFW	Returns the firmware identification number, the device	
27	Overal Battany Otata	000	model and firmware version.	
31	Query Battery State	QSO	Return the battery level	

4.5 PRONTO のシリアルコマンド詳細説明

4.5.1 表示

<u>01 - スケールの設定</u>

PRONTO ハイパワーシリーズ ユーザーズマニュアル(V1.4)

このコマンドは現在のデータの表示を特定のスケールに設定するために使用されます。低い方のスケールは常にゼロ です。高い方のスケールは下の表にあります。オートスケールモードは、現在の値に最適なスケールをリアルタイムで適 用します。このパラメータは、以下の表のいずれかの ID で、2 桁の数字でなければなりません。

Command	Parameters	Answer
SCS	Range index	

Index	Value	Index	Value
00	1 picowatt or picojoule	21	30 milliwatts or millijoules
01	3 picowatts or picojoules	22	100 milliwatts or millijoules
02	10 picowatts or picojoules	23	300 milliwatts or millijoules
03	30 picowatts or picojoules	24	1 watt or joule
04	100 picowatts or picojoules	25	3 watts or joules
05	300 picowatts or picojoules	26	10 watts or joules
06	1 nanowatt or nanojoule	27	30 watts or joules
07	3 nanowatts or nanojoules	28	100 watts or joules
08	10 nanowatts or nanojoules	29	300 watts or joules
09	30 nanowatts or nanojoules	30	1 kilowatt or kilojoule
10	100 nanowatts or nanojoules	31	3 kilowatts or kilojoules
11	300 nanowatts or nanojoules	32	10 kilowatts or kilojoules
12	1 microwatt or microjoule	33	30 kilowatts or kilojoules
13	3 microwatts or microjoules	34	100 kilowatts or kilojoules
14	10 microwatts or microjoules	35	300 kilowatts or kilojoules
15	30 microwatts or microjoules	36	1 megawatt or megajoule
16	100 microwatts or microjoules	37	3 megawatts or megajoules
17	300 microwatts or microjoules	38	10 megawatts or megajoules
18	1 milliwatt or millijoule	39	30 megawatts or megajoules
19	3 milliwatts or millijoules	40	100 megawatts or megajoules
20	10 milliwatts or millijoules	41	300 megawatts or megajoules

初期設定:オートスケール

下記の例は、スケールを3ナノワットまたは3ナノジュールに設定します。

Command: *SCS07	Answer:
-----------------	---------

02 - スケールアップの設定

このコマンドは現在のデータの表示をより高いスケールに設定するために使用されます。

Command	Parameters	Answer	Model Available
SSU	None		PRONTO-250-PLUS

03 - スケールダウンの設定

このコマンドは現在のデータの表示をより低いスケールに設定するために使用されます。

Command	Parameters	Answer	Model Available
SSD	None		PRONTO-250-PLUS

04 - 現在のスケールインデックスを取得

このコマンドは、0 から 41 までの間のスケールインデックスを確認します。 完全なスケールインデックステーブルについては、Set Scale コマンド(SCS)の詳細を参照して下さい。

Command	Parameters	Answer	Model Available
GCR	None	Index from 0 to 41	PRONTO-250-PLUS

Command: *GCR	Answer:	Range: 10 <cr><lf></lf></cr>	
---------------	---------	------------------------------	--

05 - オートスケールの設定

このコマンドは表示をオートスケールにするために使用されます。

Command	Parameters	Answer	Model Available
SAS	1: On		PRONTO-250-PLUS
	0: Off		

06 - オートスケールの取得

このコマンドは、オートスケールオプションが有効になっているかどうかを確認します。

Command	Parameters	Answer	Model Available
GAS	None	1: On 0: Off	PRONTO-250-PLUS

Command: *GAS	Answer:	AutoScale: 1 <cr><lf></lf></cr>

07 - 有効スケールの表示

このコマンドは、接続されているヘッドがサポートしているすべての有効なスケールを表示するために使用されます。ス ケールはスケールインデックスで表示されます。対応する表については、設定セクションを参照して下さい。

Command	Parameters	Answer	Model Available
DVS	None	The valid scale index.	PRONTO-250-PLUS

次の例は PRONTO-250-PLUS 用で、以下のスケールが設定可能です。

	例	
Command: *DVS	Answer:	[24]: 1.000 <cr><lf> [25]: 3.000<cr><lf> [26]: 10.00<cr><lf> [27]: 30.00<cr><lf> [28]: 100.0<cr><lf> [28]: 100.0<cr><lf> [29]: 300.0<cr><lf></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr>

08 - トリガーレベルの設定

このコマンドはエネルギーモードで使用する際、内部トリガーレベルを設定します。

Command	Parameters	Answer	Model Available
STL	Trigger Level (in percentage) must be 4 numerical values		PRONTO-250-PLUS

初期設定:2%

0.1 から 99.9 の間で設定可能です。

Command: *STL15.4 (15.4%) *STL00.2 (0.2%)	Answer:

09 - トリガーレベルの確認

このコマンドはトリガーレベルを確認します。値は0.1%~99.9%の間です。この機能はエネルギーモードのみです。

Command	Parameters	Answer	Model Available
GTL	None	Returns the trigger in %.	r level PRONTO-250-PLUS
		例	
Command: *GTL		Answer 2.0<0	CR> <lf></lf>

10 - 測定モード表示の取得

このコマンドは PRONTO の測定モードを確認します。PRONTO のタイプに応じて、W の連続パワーモード (CWP)、W のシングルショットパワーモード(SSP)、または J のシングルショットエネルギーモード(SSE)になります。

Command	Parameters	Answer	Model Available
GMD	None	CWP = 0 SSP = 3 SSE = 2	All
		例	
Command: *GMD		Answer:	Mode: 0 <cr><lf></lf></cr>

<u>11 - コントロール LCD</u>

このコマンドは、LCD をオン/オフして制御するために使用されます。LCD がオフの場合でも、PRONTO はまだ機能しています。

Command	Parameters	Answer	Model Available
LCD	1: On		All
	0: Off		

Command: *LCD1	Answer:
----------------	---------

4.5.2 データ取得

12 - 現在値の照会

このコマンドは、現在モニターに表示されている値を照会するために使用されます。 値はワットまたはジュール単位で 表示されます。

Command	Parameters	Answer	Model Available
CVU	None	Data in ASCII (Scientific notation)	All

例えば、506.601 ワットの読み取り値と-12.25631 ミリワットの読み取り値は、次のように表示されます。

Command: *CVU	Answer:	+5.066010e+02 <cr><lf></lf></cr>
Command: *CVU	Answer:	-1.225631e-02 <cr><lf></lf></cr>

<u>13 - データの連続送信</u>

このコマンドは、データサンプリング設定に従ってシリアルポートにデータを送信するために使用されます。

PRONTO ハイパワーシリーズ ユーザーズマニュアル(V1.4)

Command	Parameters	Answer	Model Available
CAU	None	Data in ASCII (Scientific notation)	All

例えば、CWPの PRONTO では、コマンド*CSU が送信されるまで、5.0 ワット前後の読み取り値がこのように表示されます。

	Answer :
Command: *CAU	+5.066010e+00 <cr><lf> +5.066012e+00<cr><lf> +5.066014e+00<cr><lf> +5.066022e+00<cr><lf> +5.066032e+00<cr><lf> +5.066042e+00<cr><lf> </lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr>

<u> 14 - CAU コマンドの停止</u>

このコマンドは、CAU コマンドによって有効にされたリアルタイム転送を停止するために使用されます。

Command	Parameters	Answer	Model Available
CSU	None		All

15 - 新しい値のクエリ

このコマンドは、新しい値がデバイスから利用可能かどうかを確認するために使用されます。オプションですが、シングル パルス動作で使用する場合に使用することをお勧めします。

Command	Parameters	Answer	Model Available
NVU	None	New Data Available	All
		or	
		New Data Not Available	

Command: *NVU Answer: New Data Not Available <CR><LF>

例

16 - ディテクター温度の送信

このコマンドは、データサンプリングレートに従って温度のデータをシリアルポートに送信するために使用されます。 TMP1 コマンドを使用するには、CAU コマンドを有効にする必要があります。TMP1 コマンドを使用すると、CAU コ マンドと同じ速度で温度が送信されます。最初の数字は測定された電力であり、2 番目の数位は測定された温度 です。TMP0 はディテクター温度の単一値を送信します。

PRONTO ハイパワーシリーズ ユーザーズマニュアル(V1.4)

Command	Parameters	Answer	Model Available
TMP	0,1	Data in ASCII	All

例えば、ワット計測の場合、コマンド*CSU が送信されるまで、約 5.0 ワットの読み取り値が次のように表示されます。

	Answer :
Command: *CAU and *TMP1	+5.066010e+00, 23.1 <cr><lf> +5.066012e+00, 23.2 <cr><lf> +5.066014e+00, 23.2 <cr><lf></lf></cr></lf></cr></lf></cr>
Command: *TMP0	Answer :
	23.0 <cr><lf></lf></cr>

4.5.3 セットアップ

<u>17 - 波長補正をnm 単位で設定</u>

このコマンドは、検出器で使用されている波長をnm単位で指定するために使用されます。検出器の内部メモリには、広範囲の波長の測定スペクトルデータが含まれています。デバイスでサポートされている最小波長と最大波長の間に有効な値が設定されています。浮動小数点値ではありません。入力パラメータは5桁でなければなりません。目的の波長に5桁がない場合は、ゼロ詰めの数字を入力する必要があります。例えば、波長514nmに設定するには、00514または514.0と入力する必要があります。

波長としてゼロを指定するか、パラメータとして範囲外の値を指定すると、コマンドがキャンセルされます。

Command	Parameters	Answer	Model Available
PWC	Wavelength		All

初期設定:校正波長(通常 1064nm, モデルによって異なります)

波長を1550nmに設定するには以下のようになります。

Command: *PWC01550 Answer:

18 - パーソナル波長補正をミクロン単位で設定

このコマンドは、波長をミクロン単位で指定するために使用されます。ディテクターの内部メモリには、広範囲の波長の 測定スペクトルデータが含まれています。デバイスがサポートする最小波長と最大波長の間に有効な値が設定され ています。入力パラメータは5桁でなければならず、浮動小数点値にすることができます。目的の波長に5桁がな い場合は、ゼロ詰めの数字を入力する必要があります。10.60ミクロンを設定するには、010.6と入力します。 波長としてゼロを指定するか、パラメータとして範囲外の値を指定すると、コマンドがキャンセルされます。

Command	Parameters	Answer	Model Available
PWM	Wavelength		All

初期設定:校正波長(通常1064nm, モデルによって異なります)

下記は 2.5 ミクロン(2500nm)に設定した例です。

Command: *PW	/M02.50
--------------	---------

Answer:

19 - 波長の取得

このコマンドは、波長をnm 単位で確認します。

Command	Parameters	Answer	Model Available	
GWL	None	Returns the wavelength	All	
		in nm		

例

4.5.4 コントロール

20 - 先読み機能の設定

このコマンドは、デバイスが読み取り中に先読み機能を有効または無効にするために使用されます。先読み機能は、 ディテクターのキャリブレーションを使用してより早い測定値を提供するソフトウェアベースの加速アルゴリズムです。

Command	Parameters	Answer	Model Available
ANT	1: On		All
	0: Off		

初期設定:オン

下記は先読み機能オンに設定された例です。

Command: *ANT1	Answer:
----------------	---------

21 - 先読み機能の状況

このコマンドは、先読み機能の状況を確認します。先読み機能を利用しない場合は常にオフになります。

Command	Parameters	Answer	Model Available
GAN	None	1: On	All
		例	
Command: *GA	N	Answer: Ant	ticipation: 0 <cr><lf></lf></cr>

22 - セロオフセットの設定

このコマンドは、新しいゼロ点を設定するコマンドが発行された時点で、この先の全ての測定値から現在の値を減算します。

Command	Parameters	Answer		Model Available
SOU	None	Autoscale: Fixed scale:	Please Wait Done!	PRONTO-250-PLUS

Command: *SOU	Answer: Please Wait <cr><lf> Done! <cr><lf></lf></cr></lf></cr>
---------------	---

23 - ゼロオフセットの取り消し

このコマンドは、ゼロオフセットコマンドを取り消して、ゼロ点をゼロに設定します。(SOU コマンドを取り消します)

Command	Parameters	Answer	Model Available
COU	None		PRONTO-250-PLUS

24 - セロオフセットの取得

このコマンドは、ゼロオフセットが有効になっているかどうかを確認します。

Command	Parameters	Answer	Model Available	
GZO	None	1: On	PRONTO-250-PLUS	
		0: Off		
· · · · · · · · · · · · · · · · · · ·				
Command: *GZ	Ö	Answer:	Zero: 0 <cr><lf></lf></cr>	

25 - ユーザー乗数の設定

このコマンドは乗数の値を0.5から2.5の間で設定するために使用されます

Command	Parameters	Answer	Model Available
MUL	8-character numerical value		All

初期設定:1

下記は乗数 2.5 をセットした例

Command: *MUL000002.5	Answer:
Or	
*MUL2.500000	

26 - ユーザー乗数の取得

このコマンドは乗数値を確認するために使用されます。

27 - ユーザーオフセットの設定

このコマンドは、オフセットの値を設定するために使用されます。

Command	Parameters	Answer	Model Available
OFF	8-character numerical value		All

PRONTO ハイパワーシリーズ ユーザーズマニュアル(V1.4)

GENTEC-EO JAPAN 合同会社

初期設定 : 0

下記は、オフセットを1.5ミリワットまたは1.5ジュールに設定した例です。

Command: *OFF1.500000	Answer:
or *OFF1.500e+0	

利用可能な他のオプションはゼロオフセットです。ユーザーの乗数とオフセットの前に、ゼロオフセット操作が最初に行われます。

28 - ユーザーオフセットの取得

このコマンドは、オフセット値を確認します。

Command	Parameters Answer M		Model Available		
GUO None		Current offset value	All		
一 例					
Command: *GUO		Answer : User Offset: 1.500000	0E-03 <cr><lf></lf></cr>		

29 - 押しボタン

このコマンドは、ディスプレイに表示されている任意のボタンとホームボタンの短いタッチをシュミレートするために使用されます。各ボタンには1から7までの番号が付けられており、左から右へ、上から下へ、本のように並べられています。 0はホームボタンを制御するために予約されています。

このコマンドは次の例でのみサポートされています。

次の例は、データを保存する方法を示しています。

次の例は、下記のシーケンスを使用してモードを変更する方法を示しています。(PRONTO-250-PLUSの場合)

30 - 長押しボタン

このコマンドは、ディスプレイおよびホームボタンに表示されているボタンを3秒間長押しするのをシミュレートするため に使用されます。各ボタンには1から7までの番号が付けられおり、左から右へ、上から下へ、本のように並べられて います。0はホームボタンを制御するために予約されています。

このコマンドは、次の例でのみサポートされています。

4.5.5 機器と検出器の情報

31 - バージョン照会

このコマンドは、ファームウェアバージョンとデバイスタイプに関する情報を取得するために使用されます。

Command	Parameters	Ans	wer	Model Available
VER	None	Vers	ion and device type	All
		分 例		
Command: *\	/ER	Answer:	Pronto Plus Versior <cr><lf></lf></cr>	1.00.04

32 - 情報照会

このコマンドは、以下の特性に関する情報を取得する為に使用されます。

測定モード / 最大、最小および現在のスケール / 最大、最小および現在の波長 / アッテネーター設定 / ディテクターのモデル / シリアル番号

Command	Parameters	Answer	Model Available
STS	None	A hexadecimal structure described in the table below.	All

最初の Byte は構造の有効性を表します。1 は構造の終わりを表します。次の 4Byte はアドレス行を表し、最後の 4Byte は実際の値です。値は 32 ビットで書き込まれます。つまり、すべての値が 2 行で書き込まれます。1 行目は LSB を表し、2 行目は MSB を表します。

次の表は、XLP12-3S-H2-INT-D0, S/N 199672 の出力を示してします。 (PRONTO シリーズにも対応して います。)

Hexadecimal Structure		Converted	Definition	
Valid	Address	Value	Value	
:0	0000	0003	3	Reserved
:0	0001	0000	0	Reserved
:0	0002	0003	3	Reserved
:0	0003	0000	0	Reserved
:0	0004	0000	0	Measure Mode LSB
:0	0005	0000	0	Measure Mode MSB
:0	0006	0015	21	Current scale LSB(refer to
				scale index *SCS)
:0	0007	0000	0	Current scale MSB(refer to
				scale index *SCS)
:0	0008	0019	25	Maximum scale LSB(refer to
				scale index *SCS)

:0	0009	0000	0	Maximum scale MSB(refer to
				scale index *SCS)
:0	000A	0011	17	Minimum scale LSB(refer to
				scale index *SCS)
:0	000B	0000	0	Minimum scale MSB(refer to
				scale index *SCS)
:0	000C	0428	1064	Current wavelength LSB(nm)
:0	000D	0000	0	Current wavelength MSB(nm)
:0	000E	2968	10600	Maximum wavelength
				LSB(nm)
:0	000F	0000	0	Maximum wavelength (nm)
:0	0010	00C1	193	Minimum wavelength LSB(nm)
:0	0011	0000	0	Minimum wavelength(nm)
:0	0012	0001	1	Is Attenuator available
				LSB(1=yes 0=no)
:0	0013	0000	0	Is Attenuator available
				MSB(1=yes 0=no)
:0	0014	0000	0	Is Attenuator on LSB(1=yes
				0=no)
:0	0015	0000	0	Is Attenuator on MSB(1=yes
				0=no)
:0	0016	2968	10600	Maximum wavelength with
				attenuation LSB(nm)
:0	0017	0000	0	Maximum wavelength with
				attenuation MSB(nm)
:0	0018	00C1	193	Minimum wavelength with
				attenuation LSB(nm)
:0	0019	0000	0	Minimum wavelength with
				attenuation MSB(nm)
:0	001A	4C 58	XL	Detector name (You must
:0	001B	31 50	P 1	convert the hexadecimal
				values in ACSCII characters)
:0	001C	2D 32	2 -	
:0	001D	53 33	3 S	
:0	001E	- H		

GENTEC-EO JAPAN 合同会社

:0	001F	2 -		
:0	0020	D 0		
:0	0021			0000=Nutermination character
:0	0022			The rest of the characters
				aren't valid until line 002A
:0	0023			
:0	0024			
:0	0025	40 03	0	
:0	0026	00 1A		
:0	0027	00 00		
:0	0028	E1 20	А	
:0	0029	00 3A	:	
:0	002A	39 31	19	Detector name(You must
:0	002B	36 39	96	convert the hexadecimal
				values in ASCII characters)
:0	002C	32 37	72	
:0	002D	00 00		0000=Null termination
				character
:1	0000	00 00		End of structure

33 - 拡張状況の照会

このコマンドは、次の特性に関する情報を取得する為に使用されます。

測定モード / 最大、最小および現在のスケール / 最大、最小および現在の波長 / アッテネーター設定 / ディ テクターのモデル / シリアル番号 / トリガーレベル (0.001 to 0.999) / オートスケールモード / ゼロオフセット モード / ユーザー乗数 / ユーザーオフセット

Command	Parameters	Answer	Model Available
ST2	None	A hexadecimal structure described in the table below.	All

最初の Byte は構造の有効性を表します。 0 は有効な行を表し、1 は構造の終わりを表します。 次の 4Byte は アドレス行を表し、最後の 4Byte は実際の値です。 値は 32 ビットで書き込まれます。 つまり、 すべての値が 2 行で 書き込まれます。 1 行目は LSB を表し、 2 行目は MSB を表します。

次の表は、XLP12-3S-H2-INT-D0, S/N 199672 の出力を示してします。 (PRONTO シリーズにも対応して います。)

Hexadecimal Stru	ucture		Converted	Definition
Valid	Address	Value	Value	
:0	0000	3	3	Reserved
:0	0001	0	0	Reserved
:0	0002	3	3	Reserved
:0	0003	0	0	Reserved
:0	0004	0	0	Measure Mode LSB
:0	0005	0	0	Measure Mode MSB
:0	0006	11	17	Current scale LSB(refer to
				scale index *SCS)
:0	7	0	0	Current scale MSB(refer to
				scale index *SCS)
:0	0008	19	25	Maximum scale LSB(refer to
				scale index *SCS)
:0	0009	0	0	Maximum scale MSB(refer to
				scale index *SCS)
:0	000A	11	17	Minimum scale LSB(refer to
				scale index *SCS)
:0	000B	0	0	Minimum scale MSB(refer to
				scale index *SCS)
:0	000C	428	1064	Current wavelength LSB(nm)
:0	000D	0	0	Current wavelength MSB(nm)
:0	000E	2968	10600	Maximum wavelength
				LSB(nm)
:0	000F	0	0	Maximum wavelength (nm)
:0	0010	00C1	193	Minimum wavelength LSB(nm)
:0	0011	0	0	Minimum wavelength(nm)
:0	0012	1	1	Is Attenuator available
				LSB(1=yes 0=no)
:0	0013	0	0	Is Attenuator available
				MSB(1=yes 0=no)
:0	0014	0	0	Is Attenuator on LSB(1=yes
				0=no)
:0	0015	0	0	Is Attenuator on MSB(1=yes
				0=no)

GENTEC-EO JAPAN 合同会社

:0	0016	2968	10600	Maximum wavelength with
				attenuation LSB(nm)
:0	0017	0	0	Maximum wavelength with
				attenuation MSB(nm)
:0	0018	00C1	193	Minimum wavelength with
				attenuation LSB(nm)
:0	0019	0	0	Minimum wavelength with
				attenuation MSB(nm)
:0	001A	4C 58	XL	Detector name (You must
				convert the hexadecimal
				values in ACSCII characters)
:0	001B	31 50	P 1	
:0	001C	2D 32	2 -	
:0	001D	53 33	3 S	
:0	001E	48 D	- H	
:0	001F	2D 32	2 -	
:0	0020	30 44	D 0	
:0	0021	0 0		0000=Nutermination character
:0	0022	00		The rest of the characters
				aren't valid until line 002A
:0	0023	0 0		
:0	0024	1F 0		
:0	0025	40 3	@	
:0	0026	0 1A		
:0	0027	0 0		
:0	0028	E1 20	А	
:0	0029	0 3A	:	
:0	002A	39 31	19	Detector name(You must
:0	002B	36 39	96	convert the hexadecimal
				values in ASCII characters)
:0	002C	32 37	72	
:0	002D	00		0000=Null termination
				character
:0	002E	D70A	0.0200	Trigger Level LSB(between
				0.001 and 0.999)

:0	002F	3CA3		Trigger Level MSB(between
				0.001 and 0.999)
:0	0030	0001	1	Is autoscale mode on? MSB
:0	0031	0000	0	Is autoscale mode on? MSB
:0	0032	0000	0	Is anticipation on? LSB
:0	0033	0000	0	Is anticipation on? MSB
:0	0034	0000	0	Is zero offset on? LSB
:0	0035	0000	0	Is zero offset on? MSB
:0	0036	0000	1.0000	Correction Multiplier LSB
:0	0037	3F 80		Correction Multiplier MSB
:0	0038	0000	0.0000	Correction Offset LSB
:0	0039	0000		Correction Offset MSB
:1	0000	0000	0	End of structure

<u>34 - 機器 ID の確認</u>

このコマンドは、デバイスタイプに関する情報を取得するために使用されます。

Command	Parameters	Answer		Model Available	
IDN	None	Device t	уре	All	
Command: *IDN		Answer:	Pronto <cr></cr>	<lf></lf>	

35 - 機器ファームウェアバージョンの確認

このコマンドは、デバイスのファームウェアバージョンを取得するために使用されます。

Command	Parameters	Answer		Model Available	
GSV	None	Version		All	
P 何J					
Command: *GSV		Answer:	1.00.04 <cr></cr>	<lf></lf>	

36 - グローバル情報の確認

このコマンドは、デバイスに関する一般的な情報を取得するために使用されます。この情報は前のコマンドに含まれています。情報は、ファームウェアの識別番号、デバイスモデル、およびファームウェアバージョンです。

```
PRONTO ハイパワーシリーズ ユーザーズマニュアル(V1.4)
```

GENTEC-EO JAPAN 合同会社

Comm	and	Parameters	Answe	r	Model Available	
GFW		None	Version	n and device type	All	
· 例						
	Command: *GFV	V	Answer:	104233, Pronto P <cr><lf></lf></cr>	Plus 1.00.04-RC5	

37 - バッテリー状況の照会

このコマンドは、バッテリーの電力をパーセンテージで取得するために使用されます。

Command	Parameters	Answer	Model Available		
QSO	None	Number in percentage	All		
Command: *QSO	A	Answer: 98 <cr><l< td=""><td>F></td></l<></cr>	F>		

4.5.6 エラーメッセージ

#	Error	Comment
1	Command Error. Command not recognized.	Command is invalid.
2	Command Error. Command must start with '*'	All text commands must begin with a trig
		character (*).

5. 安全にお使いいただくために

5.1 製品全般に関する情報

長く信頼性の高い測定ができるよう、PRONTO ハイパワーディテクターは以下の環境で保管、使用してください。

保管環境:10~60℃、RH<90% 動作環境:10~40℃、RH<80%

上記よりも過酷な条件で保管、使用される場合、Gentec-EOの代理店もしくは Gentec-EO Japan までご連絡ください。

正確な測定を行うためには、受光面の中心にレーザー光が照射されるようにします。その時のビーム径は、校正時の条件と同じである事が理想で、>98%の真円度のビームが受光面の中心に 50%の受光面積で照射する事に 相当します。これは、国際電気標準会議(International Electrotechnical Commission) #1040「パワ ー・エネルギー測定ディテクター...」に基づきます。

校正時のビーム径は、校正証明書に記載されていますのでご確認下さい。

5.2 安全にお使いいただくために

PRONTO-HP シリーズでは以下の項目にご注意ください。

拡散反射: PRONTO ハイパワーシリーズでは、5~15%の拡散反射が発生します。

鏡面反射: PRONTO-500-IPL の場合、8~10%の反射が発生します。

受光面から拡散反射された光は、ランバート反射のように均一に拡散していきます。広角への反射を抑えるため には、黒色の保護スリーブのようなものをご用意ください。

保護眼鏡:レーザー光測定時は装着してください。

受光部温度: 測定時、温度が上がり非常に熱くなります。やけどを起こさないよう十分ご注意ください。

5.3 受光面へのダメージ

パワーメーターの受光部へのダメージ発生は、多くの場合、メーカーが定めている仕様値を超えた平均パワー密度の レーザー光が照射される事が多いです。測定前に仕様をご確認ください。

特に PRONTO ハイパワーシリーズは、最大 10kW までのレーザー光測定ができますが、できる限りビーム径を広げ た状態で測定するようにしてください(推奨はΦ46~52mm 程度を推奨します)。また、最小ビーム径について、ア パーチャー径の 10%未満のレーザー光測定は推奨しません。そのような場合、事前に Gentec-EO の代理店もし くは Gentec-EO Japan までお問い合わせください。

損傷閾値は、測定するレーザー光のパワーが上がるにつれて下がっていきます。以下の表はガウシアンビーム (TEM00)を入射した場合の損傷閾値を表しています。最小 1/e²ビーム径の値は、仕様値の損傷閾値と比較し て 50%以下になるよう計算した時の値です。もしビームプロファイルにピーク強度が高い"ホットスポット"がある場 合、そこに合わせてビーム径を考慮する必要があります。

PRONTO ハイパワーシリーズ ユーザーズマニュアル(V1.4)

	PRONTO-500		PRON	ТО-ЗК	
レーザーパワー	損傷閾値	最小 1/e ² ビーム径	損傷閾値	最小 1/e ² ビーム径	
kW	kW/cm ²	cm	kW/cm ²	cm	
0.1	25	0.2			
0.5	5	0.8	7.0	0.9	
1			6.5	1.0	
2			5.7	1.4	
3			5.0	1.9	
	PRON	TO-6K	PRONT	ГО-10К	
3	8.0	1.9			
6	7.0	2.6	7.0	2.6	
10			5.5	3.3	

以下は YAG 波長(1064nm)のレーザーに対する、各パワーレベルでの最小ビーム径です。

以下は CO² 波長(10.6um)のレーザーに対する、各パワーレベルでの最小ビーム径です。

	PRONTO-500		PRON	то-зк
レーザーパワー	損傷閾値	最小 1/e ² ビーム径	損傷閾値	最小 1/e ² ビーム径
kW	kW/cm ²	cm	kW/cm ²	cm
0.1	8.3	0.4		
0.5	1.7	1.5	2.3	2.4
1			2.2	2.6
2			1.9	3.7
3			1.7	5.0
	PRON	TO-6K	PRONT	ГО-10К
3	2.6	2.5		
6	2.3	3.5	2.3	3.5
10			1.8	5.0

受光部に汚れ等がある場合、ダメージが発生する可能性があります。受光面の変色については、程度が軽い場合 は問題ない事もあります。

PRONTO ハイパワーシリーズについては、受光面の再コーティングにより継続してお使いいただける事も可能です。 修理や再校正については Gentec-EO の代理店または Gentec-EO Japan までお問い合わせください。

5.4 受光部の温度センサーについて

PRONTO 製品には受光部の温度をモニターするための温度計が内蔵されています。これは受光部をダメージから 保護する目的で付いており、仕様に記載されている各モデルの許容最大温度を超えないようにしてお使いください。 温度が25℃以下の場合は、液晶部の温度表示が下記(a)のように表示されます。測定をしていくと受光部温度が上がり、それに伴ってアイコン表示も変化していきます。

受光部温度が許容上限値に近づくと、(b)のように受光部が過熱状態である事を示し、全機能が使えなくなります。

PRONTO ハイパワーシリーズにはハンドルが付属しますが、これは持ち運び用途のものです。手持ちの状態

でレーザーを測定する事は推奨しません。測定中の安全には十分注意を払ってください。

Gentec-EO または販売者は誤使用による事故や損害について、責任を負いません。

6. USB ドライバーインストール

PRONTO USB ドライバーは PC に仮想 COM ポートをインストールします。

https://gentec-eo.com/downloads

- 1, PRONTO をコンピューターに接続しないでください。
- 2, PRONTO ready to use というメッセージが表示されるまで、インストール手順に従います。

3, PRONTO とインストールソフトウェアに繋げることができます。

7. メンテナンス

PRONTO-HP シリーズは、当社ウェブサイトから最新のファームウェアを無償で更新できます。 お手持ちの PC へ、ダウンロードセクション <u>https://gentec-eo.com/downloads</u>から最新版をダウンロードし、 USB ケーブルを接続してファームウェアをアップデートしてください。

具体的方法については、後述の Appendix B 及び C をご参照下さい。

8. 適合情報

Application of Counsil Directive(s):	2014/30/EU EMC Directive
Manufacturer's Name: Manufacturer's Address:	Gentec Electro Optics, Inc. 445 St-Jean Baptiste, suite 160 (Quebec), Canada G2E 5N7
European Reprensentative Name: Representative's Address:	Laser Components S.A.S. 45 bis Route des Gardes 92190 Meudon(France)
Type of Equipment: Model No: Year of test & manufacturer:	Laser Power Meter PRONTO High Power 2015

Standard(s) to which Conformity is declared: EN 61326-1:2006

Standard	Description	Performance
		Criteria
CISPR 11	Limits and methods of measurement of radio interference	Class B
	characteristics of information technology equipment.	
	Testing and measurements of radiated emission.	
EN 61000-4-2	Electromagnetic compatibility(EMC) – Part 4: Testing and	Class A
	measurements techniques – Section 4.2 : Electrostatic	
	discharge.	
EN 61000-4-3	Electromagnetic compatibility(EMC) – Part 4: Testing and	Class A
	measurements techniques- Section 3 : Radiated, Radio	
	Frequency immunity.	
ENV 50204	Radiated Electromagnetic field from digital radio	Class A
	telephones-immunity test 900MHz pulsed	

I, the undersigned, hereby declare that the equpment specified above conforms to the above Directive(s) and Standard(s).

Place:	Quebec(Quebec)	_
Date:	July 14, 2016	_
llo	44	_ (President)

Appendix A:WEEE 指令

WEEE 指令 2002/96/EC に基づくリサイクル・分別

このセクションでは、製品が寿命を迎えた時、リサイクル業者が閲覧するためのものです。絶縁部を取り除いたり表示 器内部を故障させてしまった場合、保証が効きません。

納入時、下記が含まれています。

- 本体1台
- 校正証明書 1部

<u>分別</u>

- 紙 :校正証明書
- PCB : ディテクターに内蔵
- アルミ : ディテクター外装
- プラスチック : ディテクター内部

APPENDIX B : PRONTO DATA TRANSFER ソフトウェアのインストール

インストール手順は以下の通りです。

- 1. 当社ウェブサイトからドライバーをダウンロード、インストールします。
- 2. 当社ウェブサイトからソフトウェアファイルをダウンロードします。
- 3. EXE ファイルをダブルクリックし、インストーラーを起動します。

4. インストールするフォルダを選択し、Next(次へ)をクリックしてインストール完了までお待ちください。その後

Close(閉じる)をクリックします。

5. インストールが終了したら、次は PRONTO Data Transfer ソフトウェアを起動します。

6. 下記画面が現れますので、Download File ボタンを押します。

7. ダウンロード先の確認を要求されますので、ファイル名を入力してデータを保存(フォーマット:txt)してください。

🔯 名前を付けて保存					×
← → • ↑ 📕	≫ PC ≫ デスク	トップ 👂 新しいフォルダー	v ₽	新しいフォルダーの検索	Q
整理 ▼ 新しいフ	ォルダー				• ?
S PC	^ 名前	^		更新日時	種
🏮 ダウンロード		检壶冬州	にみする頂	日/+本川+++/	
📜 デスクトップ		1天赤木口	に以りの次	ロはのうよどん。	
[ドキュメント					
隓 ピクチャ					
🔚 ビデオ					
🌗 ミュージック					
👟 Windows (C:)					
🧳 ネットワーク					
	~ <				>
ファイル名(N):	testtxt				~
ファイルの種類(T):	Text file (*.txt)				~
▲ フォルダーの非表示				保存(S)	キャンセル

8. ダウンロードしたデータを使って、測定結果の分析を行う事が出来ます。

APPENDIX C: PRONTO ファームウェアのアップデート

- 1. この手続き前に、PRONTO Data Transfer ソフトウェアで装置メモリ内に保存した測定データを PC に保存 してください。
- 2. 当社ウェブサイトから、ファームウェアをダウンロードします。
- 3. お手持ちの PRONTO を USB ケーブルで PC に接続します。
 - ファームウェアのアップデート中は PC から抜かないようにしてください。
- 4. exe ファイルをダブルクリックし、Yes を押してアップデートを開始します。

	Pronto Updater					
	Do not unplug you device or shut down your computer during this process, which should take a few minutes.					
_	ProntoUpdater	×				
	? The selected file is for a Pronto. Do you wish to continue?					
	Yes No					

5. アップデートが終了したら、PRONTOをケーブルから外して通常通り測定ができます。

カスタム製品 ・200kHzエネルギーメーター ・テラヘルツ測定器 ・カロリメーター

Gentec-EO Japan 合同会社

〒114-0023

東京都北区滝野川 1-1-1 EXL111 ビル 101 号

- TEL : 03-5972-1290
- Mail : <u>service@gentec-eo.com</u>
- WEB : https://www.gentec-eo.com/JP/

GENTEC-EO JAPAN 合同会社